If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-39=0
a = 1; b = 1; c = -39;
Δ = b2-4ac
Δ = 12-4·1·(-39)
Δ = 157
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{157}}{2*1}=\frac{-1-\sqrt{157}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{157}}{2*1}=\frac{-1+\sqrt{157}}{2} $
| 14y-9y=12 | | x−6=−4 | | 6k-2k=20k | | x+7/14=-1-2/3x | | x+7=-12/3x | | |-2x|=9x+18 | | 5+4=3x+1 | | -2x=9x+8 | | -2x+6=5x-13 | | 7n17=39 | | 44x+9=97 | | 13+2x=3x-11 | | 17-2x=31=3x | | 28x^2-23x+15=0 | | x=123*5/2+6112 | | v=5×3×3 | | 2^n-1=1024 | | 28x^2=-23x+15 | | 1,8x=270 | | 2x+3,5=2,8 | | 5h+10=180 | | 3a-30=90 | | 3x8=2× | | 9d=4d+30 | | 3(x+2)=-5(x-2) | | 2y+45=90 | | x/6+2=x/3 | | 3x+2=(x-5) | | -2x+10=4x-50 | | 3x=3-5x | | 52x17=x | | x(x+4(=32 |